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Coordination of an alkene to an electron-deficient metal— 
alkyl complex has been proposed as a requisite chain propaga­
tion step in Ziegler-Natta alkene polymerization.1-2 Calcula­
tions indicate that subsequent alkyl migration to the coordinated 
alkene via a concerted four-center transition state to generate a 
growing polymer chain has a very low activation barrier.3 The 
d0 M(alkyl)(alkene) intermediates of group 3, group 4, and 
lanthanide metals are particularly unstable due to the lack of 
d—n* back-bonding to the coordinated alkene.4 There are only 
a few examples of d0 transition metal—alkene complexes, and 
none possess an additional metal—alkyl bond.56 Jordan recently 
reported the X-ray crystal structure of the zirconium(IV) pent-
4-enyloxo chelate complex [Q)2ZrOC(OT3^CH2CH2CM-CH2J

+ 

[MeB(CeFs)3]
- (1), which was designed to model a Cp2Zr-

(alkyl)(alkene)+ intermediate.6 Here we report the synthesis 
and spectroscopic characterization of the first d0 transition 
metal—alkyl—alkene complex. 

We have investigated the reaction of yttrium hydride dimer 
(Cp*2YH)2 (2)7'8 with 3,3-dimethyl-l,4-pentadiene in an effort 
to generate a stable d0 transition metal—alkyl—alkene complex. 
Yttrium was chosen because group 3 metallocene—alkyl—alkene 
complexes are neutral and because 89Y (100% abundance) is a 
spin V2 nucleus.9 The 4-pentenyl side chain was chosen to favor 
alkene complexation by the chelation effect, and the gem-
dimethyl group was incorporated into the pentenyl backbone 
to promote ring-forming chelation.10 Intramolecular alkene 
insertion is thermodynamically disfavored by the 26 kcal mol-1 

strain in the resulting methylcyclobutyl complex. 
Yttrium hydride 2 reacted rapidly with 3,3-dimethyl-l,4-

pentadiene in methylcyclohexane-rfu at —78 0C to form a bright 
yellow solution of the d0 yttrium(III) 3,3-dimethylpentenyl 
chelate complex Cp*2YCH2CH2C(CH3)2CH=CH2 (3) in quan­
titative yield (1H NMR spectroscopy, CH2(SiMe3)2 internal 
standard) (Scheme 1). 3 is thermally unstable above —50 ° C 
and was characterized by 1H and 13C NMR spectroscopy at 
-100 0C.11 In the 1H NMR spectrum of 3, methylene 
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resonances at d -0.44 (YCH2) and 6 1.84 (YCH2CW2) confirm 
the addition of yttrium hydride to one of the diene double bonds. 
The substantial differences between the vinyl hydrogen chemical 
shifts in tethered metal—alkene complex 3 and in the starting 
diene provide evidence for coordination of the pendant alkene 
to the d0 yttrium center. The chemical shift difference (Ad) 
between the terminal vinyl hydrogens of 3 is 1.38 ppm (<3 3.76 
and 5.14) but is only 0.05 ppm (6 4.87 and 4.92) in the starting 
diene. The secondary vinyl hydrogen of 3 (d 6.78) is shifted 
to substantially higher frequency than in the starting diene (<S 
5.74). 

In the 13C NMR spectrum of 3, a methylene resonance at <5 
33.7 (d, 7yc = 45.8 Hz, YCH2) confirms the formation of an 
alkyl yttrium complex. The 15 ppm shift to higher frequency 
of the resonance of the internal alkene carbon atom of 3 (6 
161.1, d, /CH = 151 ± 2 Hz) relative to that in 3,3-dimethyl-
1,4-pentadiene (6 146.1, d, /CH = 151 Hz) provides evidence 
for alkene coordination. The chemical shift of the terminal 
alkene carbon of 3 (d 110.5, t, /CH = 154 ± 2 Hz) is similar to 
that of the starting diene (d 111.1, JCn = 156 Hz). The 
similarity of the vinyl /CH coupling constants of 3 and the 
starting diene is inconsistent with an agostic Y—H—C interaction 
in 3. 

A static chelate structure for 3 would possess diastereotopic 
Cp* groups and diastereotopic gem-methyl groups. Therefore, 
the observation of resonances for equivalent Cp* and gem-
methyl groups in both the 1H and 13C NMR spectra at —100 
0C suggests that a fluxional process interconverts the enanti-
omers of 3. Dissociation of the chelated alkene to generate 
intermediate I (Scheme 1) followed by recoordination of the 
opposite face of the alkene is the minimum process needed to 
interconvert both the gem-methyl groups and the Cp* groups. 
This rapid fluxional process is consistent with the expected 
weakness of a d0 metal—alkene interaction. 

Addition of THF to 3 at -78 0C in methylcyclohexane-^u 
led to immediate displacement of the coordinated alkene and 
quantitative formation of a colorless solution of the thermally 
unstable 1:1 yttrium(III) pentenyl THF adduct Cp*2YCH2-
CH 2C(CHS) 2CH=CH 2 (THF) (4),12 which serves as a model for 
a pentenyl yttrium complex without a coordinated alkene 
(Scheme 1). The negligible chemical shift difference (Ad) 
between the terminal vinyl hydrogens of 4 (6 4.75, br m, =CH2) 
is very different from that of the complexed alkene of 3 (Ad = 
1.38 ppm) and similar to that observed for the starting diene 
(Ad = 0.05 ppm). The 1H NMR chemical shift of the secondary 

(11)3: 1H NMR (500 MHz, C6D, 1CD3, -100 0C) d -0.44 (br s, YCH2), 
1.03 (br s, CH3), 1.82 (br s, YCH2CH2), 1.93 (br s, C5Me5), 3.76 (br d, 7cis 
= 10.7 Hz, =CHH), 5.14 (br d, Jams = 17.8 Hz, =CHH), 6.78 (br dd, J = 
17.8, 10.7 Hz, CH-); 13C(1H) NMR (126 MHz, C6DnCD3, -100 0C) 6 
11.6 (s, C5Me5), 14.6 (s, YCH2CH2), 33.7 (d, 7Yc = 45.8 Hz, YCH2), 41.2 
(s, CMe2), 43.1 (s, CH3), 110.5 (s, =CH2), 116.3 (s, C5Me5), 161.1 (s, CH-). 

(12) 4: 1H NMR (500 MHz, C6D1 ,CD3, -100 0C) d -0.74 (br s, YCH2), 
0.90 (br s, CH3), 1.35 (br m, jS-THF), 1.88 (br s, C5Me5), 3.64 (br m, 
a-THF), 4.75 (br m, -CH2) , 5.78 (br dd, J = 17.8, 10.9 Hz, CH=), 
resonance for YCH2CH2CZZ2 obscured by resonance for Cp* ligands; 
13C{'H} NMR (126 MHz, C6DnCD3, -100 0C) <5 11.6 (s, C5Me5), 14.7 
(s, YCH2CH2), 25.7 (s, /3-THF), 33.7 (d, JYC = 50.3 Hz, YCH2), 39.6 (s, 
CMe2), 43.5 (s, CH3), 67.7 (s, a-THF), 108.4 (s, -CH2), 115.2 (s, C5Me5), 
150.7 (s, CH=). 
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Figure 1. 1H NOESY trace through 3 and 4 in C6D, ,CD3 at -100 0C 
(rm = 0.050 s). The spectra are normalized to combined Cp*//?-CH2 
intensities. 

vinyl hydrogen of 4 (<5 5.78) and the 13C NMR chemical shifts 
of the alkene carbons (6 108.4, =CH2 ; 150.7, CH=) of 4 are 
also similar to those of 3,3-dimethyl-l,4-pentadiene and very 
different from those of 3. 

1H NOESY data support coordination of the alkene to the 
metal in pentenyl chelate 3. The chelate ring structure of 3 
forces all vinyl hydrogens into the proximity of the methyl 
groups of the Cp* rings. Hence, we expect NOESY cross peaks 
between the Cp* resonance and all the vinyl resonances. In 
contrast, the nonchelate structure of THF adduct 4 should yield 
weaker Cp* ** vinyl cross peaks, with particularly weak cross 
peaks to the terminal vinyl hydrogens. Figure 1 presents traces 
through 2D NOESY spectra at the overlapping Cp*//3-CH2 

resonances in 3 and 4.13 The magnitude and the distribution of 
Cp*//?-CH2 ** HC=CH2 NOE intensities reveal qualitative 
information about the structures of 3 and 4. All of the vinyl 
hydrogens in 3 show sizable NOEs of nearly equal intensities. 
The similar intensities imply that all the vinyl hydrogens are 
roughly equidistant from the Cp*//3-CH2 protons, as expected 
for a coordinated alkene. In contrast, the spectrum of THF 
adduct 4 shows a strong Cp*//?-CH2 ** a-THF NOE but weak 
Cp*//3-CH2 ** HC=CH2 NOEs. As expected, the Cp*/y9-CH2 

** ZfC=CH2 cross peak is larger than the peak to the two 
terminal vinyl hydrogens. In further support of these interpreta­
tions, the spectra of 3 and 4 exhibit similar cross peak intensities 
correlating the Cp*//?-CH2 protons to the gem-dimethyl and 
Ot-CH2 protons. 

Yttrium hydride 2 also reacts with 1,4-pentadiene at —78 0C 
to form a bright yellow solution of the thermally unstable 
pentenyl chelate complex Cp*2YCH2CH2CH2CH=CH2 (5), 
which was characterized by 1H NMR and 13C NMR spectros­
copy at —100 0C (Scheme 2).14 Formation of 5 demonstrates 
that the gem-dimethyl group on the pentenyl backbone is not 
required to form a stable alkene chelate. Evidence for alkene 
coordination is seen in the large difference in chemical shift of 

(13) Both 3 and 4 exhibit negative NOEs at 500 MHZ in methylcylco-
hexane at —100 0C, consistent with slow molecular tumbling. A short mixing 
time (50 ms) was used to minimize the effects of spin diffusion on the 
NOESY intensities. 

(14) See supporting information for spectral characterization of 5. 
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the =CH2 protons (Ad = 1.46 ppm) and in the shift to higher 
frequency of the CH= proton (6 6.58). In the 13C NMR 
spectrum of 5, the resonance of the coordinated =CH2 carbon 
(<5112.9) shifts 3 ppm to lower frequency than in 1,4-pentadiene 
and the CH= resonance (6 158.1) shifts 22 ppm to higher 
frequency. 

Pentenyl chelate 5 also was generated from the reaction of 
yttrium hydride 2 and methylenecyclobutane, presumably via 
the methylcyclobutyl intermediate II (Scheme 2). Formation 
of 5 from 2 and methylenecyclobutane demonstrates that ring 
opening via /3-alkyl elimination is facile and that the pentenyl 
chelate complex is favored over the methylcyclobutyl derivative. 
The interconversion of methylcyclobutyl and pentenyl ligands 
has been observed in several similar systems.15- '8 

Nonlocal DFT calculations OfH2SiCp2Zr(CH3)(CH2=CH2)+ 
indicate that ethylene is strongly polarized and asymmetrically 
bonded to the d0 metal center.3b Jordan's X-ray structure of 
zirconium(IV) pentenyloxo complex I6 showed asymmetric 
bonding of the alkene hgand to Zr with a bond length difference 
of 0.21 A (2.68 and 2.89 A). The similarity of the 1H and 13C 
NMR chemical shifts of the complexed alkenes of 3 and 5 with 
those reported by Jordan for 1 suggests that the complexed 
alkenes of the chelate complexes 3 and 5 also are bound 
asymmetrically to the d0 yttrium center and that the internal 
alkene carbon is positively polarized. 
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